Upper GI Endoscopy in Children- in an adult suite

Joshi MR1, Sharma SK2, Baral MR3
1Lecturer, 2Associate Professor, Department of Surgery, 3Professor, Department of Paediatrics, Kathmandu Teaching Hospital, Sinamangal, Kathmandu

Abstract
Although Upper GI endoscopy is commonly performed in adults, paediatric endoscopy is not available in many of our referral centres. The efficacy and safety of upper GI endoscopy in paediatric age group performed in adult suite of Kathmandu Medical College is reviewed. \textbf{Patients and Method:} A retrospective study of endoscopies performed on children aged up to 15 years in an adult endoscopy suite of Kathmandu medical college over last one year is presented. All cases were the referred cases from paediatric unit for various problems. \textbf{Results:} Endoscopy in paediatric group comprises only 6% of total upper GI endoscopies performed during the same year. Sex ratio was almost equal. Most cases (87%) were performed under local anaesthetic and well tolerated by the patients. Recurrent abdominal pain (RAP) was the commonest indication and among them one third of cases had significant positive finding. \textbf{Conclusion:} Upper GI endoscopy is a useful diagnostic tool in children. Where specialized paediatric endoscopy units are not feasible i.e. developing countries, endoscopic services to children can be safely provided in adult endoscopy suite with or without sedation. Upper GI endoscopy is well tolerated by children even without sedation.

\textbf{Key words:} Endoscopy, Recurrent abdominal pain.

Modern gastroenterology began with Bozzini’s crude, candle-powered \textit{lichtleiter} in 1805 and blossomed with the introduction of flexible gastrointestinal endoscopy by Hirschowitz in the late 1950s. Paediatric gastroenterology followed soon after.

Fuelled by the application of gastrointestinal endoscopy to childhood digestive disease, paediatric gastroenterology has emerged as one of the most diverse medical-surgical practices in modern medicine1. The first accounts of flexible gastrointestinal endoscopy in children appeared in the 1970s2,3,4,5,6,7,8.

In 1972, Freeman, British paediatric surgeon, reported using the fibre-optic bronchoscope for examination of the upper gastrointestinal tract in children and noted, “the need for paediatric endoscopy is well established and the indications will likely increase”. Early accounts of paediatric endoscopy stressed identification of superficial lesions not seen on radiographic contrast studies, and specific causes of upper gastrointestinal bleeding3,4. In 1977, Ament and Christie declared upper gastrointestinal fibre-optic endoscopy “one of the major diagnostic advances in paediatric gastroenterology in this decade”5.

Much difficulty is often encountered in finding the underlying cause of abdominal pain. Clinical features may vary from one patient to other and occasionally from one episode to the next even in the same child. The recent development of fibre-optic endoscopy may well prove to have a useful diagnostic technique, particularly in those children in whom other investigations are inclusive1. Esophagogastroduodenoscopy (EGD) is a well established diagnostic and therapeutic procedure in paediatric patients1. In contrast to the experience in the adults, there are limited data concerning efficacy and safety of upper GI endoscopy in paediatric patients. The information on this procedure is very scanty from non western countries1.

We have analyzed our experience of upper GI endoscopy in paediatric age group in one year.

\textbf{Patient and Method}
This is a retrospective review of the total cases of upper GI endoscopy performed in children under the age 15 years during one year (Aug, 2003 to Aug, 2004) in the department of surgery, Kathmandu medical college teaching Hospital (KMCTH). Data were taken from the record section of endoscopy unit. All children were referred cases from paediatric unit of the same hospital. The need and indication of UGI endoscopy was determined by paediatrician. Most of the cases were referred for recurrent abdominal pain (RAP).

\textbf{Correspondence}
Dr. Mukund raj Joshi.
GPO Box: 9843.
E-mail: mukundrajjoshi@yahoo.com
Recurrent abdominal pain (RAP) is usually defined as three or more bouts of abdominal pain for more than 3 months, and severe enough to affect the daily life of the child. After receiving the child in the endoscopy unit, both the child and parents were informed about the procedure in detail and its possible complications. Informed consent was taken from parents and they were asked to stay with the child till the end of procedure.

The policy was to try each case under local anaesthetic i.e. 4% lignocaine pharyngeal spray. The children who were uncooperative and in whom endoscopy could not be performed were asked to come for next attempt to be performed under general anaesthesia or intravenous sedation. Those were performed under intravenous Ketamine given by anaesthetic team. The endoscopy used was 9mm diameter Fuzinon adult video-endoscope by trained endoscopist. Endoscopic findings were recorded. No any therapeutic procedures were performed in any case. Biopsy was taken according to need, decided by endoscopist. After the procedure, babies were sent back to paediatrician with endoscopic diagnosis. Follow up endoscopies performed during the same period were excluded from the study.

Age, sex and clinical indications were tabulated. Endoscopic diagnosis was correlated and compared with clinical indication. Need of IV sedation or general anaesthetic to complete the procedure is discussed. SPSS 11.5 software was used for statistical analysis.

Result

During the period (Aug, 2003 to Aug, 2004), 519 endoscopies were performed at endoscopy unit of Kathmandu medical college teaching hospital (KMCTH). Of them, 31(6%) cases were of under 15years of age. Mean age 11.5±2.71SD. Lowest age was 7years. Fig.1 shows the age distribution. Male and females were almost equal. (Fig-2).

Table 1. Indications for endoscopy.

<table>
<thead>
<tr>
<th>Indications</th>
<th>No of cases</th>
<th>Positive findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent abdominal pain</td>
<td>26 (84%)</td>
<td>8</td>
</tr>
<tr>
<td>Repeated vomiting</td>
<td>3 (10%)</td>
<td>3</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>1 (3%)</td>
<td>0</td>
</tr>
<tr>
<td>Hematemesis</td>
<td>1 (3%)</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Endoscopic diagnosis.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No of cases</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>19(62%)</td>
<td></td>
</tr>
<tr>
<td>Gastritis</td>
<td>5(16%)</td>
<td></td>
</tr>
<tr>
<td>Duodenal ulcer</td>
<td>4(13%)</td>
<td></td>
</tr>
<tr>
<td>Reflux oesophagitis</td>
<td>1(3%)</td>
<td></td>
</tr>
<tr>
<td>Hiatus Hernia</td>
<td>1(3%)</td>
<td></td>
</tr>
<tr>
<td>Bile reflux</td>
<td>1(3%)</td>
<td></td>
</tr>
</tbody>
</table>

Regarding the need of sedation, 26 children tolerated the procedure with local anaesthetic spray. Four children needed general anaesthetic. Two of them were in initial days when the procedure was first started in institute when all paediatric endoscopy were performed under IV ketamine. Three of those four children were above 10yrs of age. Most of children who tolerated the procedure under tropical anaesthetic were under 10 age group however the relation is statistically insignificant (P=0.739). Intravenous sedation whether conscious or
deep sedation was not employed in any of the cases. In all most all cases, the procedure could be accomplished in first attempt which is very significant (P=0.00). Out of 31 cases, only two children were very intolerable to procedure and needed second attempt under general anaesthetic. (Table 3).

Table 3. Anaesthesia needed for the procedure according to age.

<table>
<thead>
<tr>
<th>Anaesthesia</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><10yr</td>
</tr>
<tr>
<td>General anaesthetic (4)</td>
<td>1</td>
</tr>
<tr>
<td>Local anaesthetic (27)</td>
<td>9</td>
</tr>
</tbody>
</table>

Discussion
Abdominal pain is a common gastrointestinal symptom in children\(^2\). The entity recurrent abdominal pain in children was first described by Apley and Naish in 1958. Recurrent abdominal pain is usually defined as three or more bouts of abdominal pain for more than 3 months, and severe enough to affect the daily life of the child. The incidence found in their community based study was 10.8% and the majority of cases were diagnosed as non-organic\(^3\). The most challenging task for the clinician seeing a child with recurrent abdominal pain is to determine whether a specific organic cause may be present and what the most appropriate investigations to be undertaken should be\(^2\). Croffie et al further confirmed that most children with recurrent abdominal pain had a functional disorder and suggested that cost-effectiveness evaluations should be carefully considered\(^2\). With the advent of paediatric endoscopy and motility studies, more studies have reported organic causes of recurrent abdominal pain\(^2\). The prevalence of organic disease responsible for the pain has ranged from less than 10% to more than 50%\(^2\). Our study has shown that the most common cause for referral is recurrent abdominal pain (88%). Approximately 33% of the cases with recurrent abdominal pain had endoscopically diagnosed positive findings. This is quite comparable with other studies.

Most of the endoscopic studies were found to be normal (66%). Other diagnosis were Gastritis (16%), Duodenal ulcer (13%), Reflux oesphagitis (3%), Hiatus hernia (3%) and bile reflux (3%). The higher incidence of normal finding is probably because routine biopsy was not performed in all cases. The endoscopic evaluation may be considered deficient on many occasions if not accompanied by histopathologic evaluation where as the endoscopist is frequently criticized for performing biopsies in situation where the gross mucosal appearance is described as normal\(^10\). In 1983, Biller et al\(^2\), reported a poor correlation of endoscopy and histology for the oesophageal mucosa in children in a retrospective review with only 45% true-positive and as high as 30% false-positive case. The correlation of gastric mucosal endoscopy and histology was also reported to be quite limited by Sauerbruch et al\(^2\).

Although safe, EGD has the potential for complication, in particular cardiopulmonary abnormalities associated with intravenous sedation. EGD is often performed in adults without sedation. It was recently suggested that, even though adult patients have a clear preference for receiving sedation, consideration should be given to abandoning its routine use in the interests of safety\(^5\). Unsedated EGD is occasionally performed in children but not been subjected to study\(^7\). There are no detailed protocols available for endoscopic sedation that have gained widespread acceptance. Published articles focusing on the practical aspects of paediatric endoscopy avoid precise recommendations with regard to sedation. The endoscopy can be performed reasonably satisfactorily in many children using a midazolam/pethidine regimen, but that as we had anticipated the sedative doses required were much greater than those recommended by the drug manufacturers and by other authorities\(^2,3,4\). Intravenous sedation is hazardous in children as the therapeutic margin between sedation and anaesthesia is very narrow. In view of this, it should be administered only under very special circumstances\(^2\). This study has shown that endoscopy could be carried out in most of the children with tropical pharyngeal anaesthesia only and almost all of them had undergone procedure in first attempt. Only four children needed general anaesthetic and three of them were above age 10. This was too in initial days when the procedure was first started in institute. This could be possible probably because of good counselling of the children and their parents before and during the procedure. Only a few of them were apprehensive where as most of them had tolerated the procedure well without any complication. There have been some similar reports from other centres. Bishop et al, “Unsedated EGD can be performed safely and successfully in children with good patient tolerance. There was a significant decrease in total procedure time for children who have unsedated EGD. Unsedated EGD should be considered a viable option for motivated children.”\(^21\) Zahavi I et al, “Upper gastrointestinal endoscopy with or without sedation is a safe and effective diagnostic procedure in the paediatric age group”\(^2\).

In the present study, we have used the available 9mm adult video-endoscope which we found to be well tolerated by the children. Almost all of them except two were successfully and completely examined in first
attempt (P <0.05). All of our patients were above 7yrs of age. Doing endoscopy in an adult unit is a new experience to us although there are similar reports. Peter et al, "Paediatric endoscopy is simple with appropriate instruments and preparation; examination techniques are similar to those used in adults. The standard adult forward- and lateral- viewing instruments (10-12mm diameter) can be used down to the age of about 2 years. Smaller paediatric instruments (5mm diameter) may be needed in infants."

Conclusion

Abdominal pain is a common problem in children and significantly associated with positive organic finding so upper GI endoscopy is a valuable and essential diagnostic procedure. Where specialized paediatric units are not feasible, e.g. developing countries, endoscopic services to children can be safely provided in an adult endoscopy unit without sedation, provided that the necessary modifications to meet the medical and psychological needs of children and their parents are taken into consideration.

Acknowledgements

We would like to acknowledge our sincere thanks to the department of surgery, department of paediatrics, department of anaesthesiology and endoscopy unit of Kathmandu medical college for active participation and College administration for continuous support.

Reference