Subtotal Petrosectomy and Cochlear Implant Placement in Otologic Presentation of “Wegener’s Granulomatosis”
Elmas F,1 Shrestha BL,2 Linder TE1

1Department of Otorhinolaryngology, Head and Neck Surgery
Luzerner Kantonsspital, Luzern, Switzerland.
2Department of Otorhinolaryngology, Head and Neck Surgery
Dhulikhel Hospital, Kathmandu University Hospital, Kavre, Nepal.

Corresponding Author
Firat Elmas
Department of Otorhinolaryngology, Head and Neck Surgery, Luzerner Kantonsspital, Luzern, Switzerland.
E-mail: firat_elmas@hotmail.com

ABSTRACT
Granulomatosis with polyangitis is a rare granuloma forming necrotizing vasculitis, which involves mainly the respiratory tract and renal system. Otologic involvement may occur primarily as chronic serous otitis media and chronic silent mastoiditis with conductive hearing loss and may rarely lead to sensorineural hearing loss requiring cochlear implantation.

This case describes a patient with granulomatous poylangitis with profound sensorineural hearing loss who underwent subtotal petrosectomy with cochlear implantation.

KEY WORDS
Cochlear implant, granulomatosis with polyangitis, subtotal petrosectomy, necrotizing vasculitis

INTRODUCTION
Wegener granulomatosis or as today named granulomatosis with polyangitis is a rare disease that is characterized by an idiopathic vasculitis of medium and small arteries leading to necrotizing granulomatous inflammation of the respiratory tract and the renal system. Typically it presents with nasal and paranasal lesions, pulmonary and renal involvement.1 It can present with otologic involvement causing serous otitis media, sensorineural hearing loss and vertigo.2 In cases of severe and persistent sensorineural hearing loss, patients may qualify for a cochlear implantation (CI). This surgery faces two challenges: 1) finding the proper access to the round window or cochleostomy through a chronically inflamed mucosa with continuous bleeding and 2) implanting a foreign body (CI) into an inflamed environment risking tympanic membrane perforations as the disease may not be controllable. These patients need careful planning of the CI procedure and an adequate operation technique that eradicates the middle ear disease, avoids recurrence, prevents meningitis and allows secure placement of the cochlear implant electrodes.3 We favor the Fisch technique of subtotal petrosectomy for cochlear implantation in this case as it provides all above mentioned properties and allows for safe and efficient implantation.4

CASE REPORTS
A 29 year old male presented in our outpatient clinic with a history of recurrent otitis media with purulent otorrhea and hearing loss. Clinical examination showed a thickened tympanic membrane with loss of anatomic landmarks
and a microperforation with discharge of secretion on
valsalva maneuver. Flexible nasopharyngolaryngoscopy
examination showed bilateral inflamed nasal mucosa
with crusting. The audiogram revealed a progressive
generator hearing loss on both sides (Fig. 1a and b). The
patient was treated initially with intravenous antibiotics
and dexamethason. The bacteriology culture of the middle
ear fluid showed no growth, especially no mycobacterium
tuberculosis.

Since the chronic suppurative otitis media and the
endonasal crusting did not improve, the blood was
investigated with suspicion of Wegener’s granulomatosis.
The results confirmed elevated cytoplasmic antineuraphil
cytoplasmic antibodies (cANCA) and Anti-PR3 (18 IU/ml.)
antibodies. The chest X-ray and a urine investigation were
normal. The rheumatologic assessment confirmed the
diagnosis of a granulomatous polyangitis. A treatment
with methotrexate was started. Meanwhile a subglottic
stenosis was confirmed during endoscopic examination.
The pneumologic assessment showed a light inspiratory
stridor, the pulmonary function test was normal without a
restriction or obstruction and with normal blood gas and
CO₂ diffusion capacity. The patient improved during his
hospital stay and was discharged.

After three months, the patient was again admitted
with severe vertigo, spontaneous nystagmus to the left
and positive Halmayagi test on the right. The right sided
vestibular paresis was confirmed in the video head impulse
test with saccades and reduced gain. The pure tone
audiogram revealed a mixed hearing loss with progression
of sensorineural component (fig. 2a and b). Treatment with
dexamethason and betahistine was started and brought
some relief of his vertigo symptoms.

A high resolution CT scan of temporal bone showed the
opacity in middle ear yet normal antrum and normal bony
labyrinth (fig. 3). The gadolinium enhanced magnetic
resonance imaging (MRI) further revealed an inflammatory
lesion within the right middle ear and mastoid. The cochlea
remained normal and fluid filled (fig. 4 and 5).
A nasopharyngoscopy with biopsy of the nasal mucosa was performed which showed a granulomatous inflammation with necrosis in the septum mucosa, and focal inflammation of the nasopharynx. A Treponema pallidum hemagglutination assay (TPHA) was negative. The rheumatologist increased the dose of the steroid therapy and started a therapy with infliximab. Due to the rapid deterioration of his hearing bilaterally, the patient was scheduled for a right side CI. A conventional anterior mastoidectomy with posterior tympanotomy would lead to difficulties at surgery with continuous bleeding, insufficient landmarks and possible improper placement of the electrodes. The continuously draining perforation was a risk for infection to the implanted ear even after a myringoplasty due to the chronicity of the polyangiitis. Therefore the patient underwent a right sided subtotal petrosectomy with abdominal fat obliteration and simultaneous cochlear implantation (Cochlear nucleus slim modiolar CI532) (fig. 6 schematic figures). The post-operative course was uneventful. The post-operative x-ray stenver’s view showed a correctly placed cochlear implant electrode. As early as 2 months after implantation, the patient regained successful speech understanding and is still under rehabilitation (fig. 8a and b).

Figure 3. HRCT scan early in the disease process showing the opacity in middle ear and yet limited extension to the antrum.

Figure 4 and 5. The gadolinium enhanced magnetic resonance imaging showing an inflammatory lesion within the right middle ear and mastoid. The cochlea remain normal and fluid filled.

Figure 6. Schematic Figures depicting Subtotal Petrosectomy with Cochlear implant.

Figure 7. Post-operative X-ray Stenvers view showing good placement of cochlear implant electrode.

Figures 4 and 5. The gadolinium enhanced magnetic resonance imaging showing an inflammatory lesion within the right middle ear and mastoid. The cochlea remain normal and fluid filled.

Figure 8a and b Post-operative audiogram and speech audiometry showing hearing recovery with cochlear implantation on the right side.

Sprach-Audiogramm
RAMENSPERGER-WÜEST Alex Stefan, 31.12.86 (30 j), m
Neumattstrasse 18, 6205 Eich
PID (FID): 8223946 (---)
---, ---
Raum, Gerät:
Datum, Audiometrist:
30.03.2017, Crusco Carmen
CS3, CI re., Gehörschutz li.
Kommentar:
Gedruckt: 30.03.2017
Seite 1 / 1
RAMENSPERGER-WÜEST / 8223946 (---)
DISCUSSION

Wegener’s granulomatosis or as today named granulomatosis with polyangiitis is a rare disease that is characterized by an idiopathic vasculitis of medium and small arteries leading to necrotizing granulomatous inflammation of the respiratory tract and the renal system. The disease is serious and can lead to renal or lung failure with a mean survival time of 5 months.

Typically it presents with nasal and paranasal lesions, pulmonary and renal involvement. Otological manifestations are present in nearly half of the cases and consist mostly of serous otitis media and eustachian tube blockage with nasopharyngeal involvement, mastoid opacification on CT scan by granulomatosis of the mucosa and may lead to sensorineural hearing loss due to inflammation of cochlear vessels.3,5

Wegener’s granulomatosis is diagnosed by clinical features and investigations such as high erythrocytic sedimentation rate, positive cytoplasmic antineutrophil cytoplasmic antibodies (C-ANCA) test, proteinuria, abnormal serum creatinine level, anemia and biopsy from nasal mucosa, middle ear mucosa or even renal biopsies. Diagnosis is made based on the Criteria of the American College of Rheumatology. Treatment typically consist of two phases. In the induction phase a combination of systemic corticosteroid and immunosuppressant is used and the maintenance phase consist of supplementation with corticosteroids and azathioprine/methotrexate.6,7

Patients with severe hearing loss/near deafness without recovery under these treatments should be evaluated for possible cochlear implantation. The surgery in these cases is challenging due to the ongoing inflammation, tympanic membrane perforations, severe and continuous bleeding from the inflamed mucosa. In addition, a foreign body will be implanted into the inflamed environment. Recurrent tympanic membrane perforations or ascending nasopharyngeal infections carry the risk of implant infection and biofilm formation. Also the need of opening the inner ear through a cochleostomy or via the round window membrane creates potential routes of spread of infection to subarachnoid spaces and meningitis. Therefore cochlear implant candidates with Wegener’s granulomatosis as any other patient with chronic otitis media require special attention and management. The primary goal of surgery besides hearing rehabilitation must be the eradication of the middle ear disease to avoid recurrenceand meningitis and prevent implant infection.8,9

Different techniques for cochlear implantation in patients with inflamed or infected middle ear where described in the literature as summarized by Szymanski et al.3 Some authors suggest to wrap the electrodes with patients own tissues to prevent extrusion. Other authors suggest reconstruction of the tympanic membrane and posterior canal wall.10,11 A different approach tries to prevent extrusion by putting the electrode insertion away from the diseased middle ear. This was achieved by a transcanacl approach, subfacial approach or a bony groove drilled into the posterior canal wall.12-13 But all of these techniques don’t solve the underlying problem, the ear still remains inflammatory and therefore has the risk of recurrence and implant infection. Only the subtotal petrosectomy technique as described by Fisch and Mattox provides a maximum exposure of the temporal bone for elimination of the middle ear disease and therefore minimal risk of recurrent disease.4 It involves eradication of all accessible pneumatic spaces in the temporal bone, removal of the middle ear mucous membrane, tympanic membrane, skin of the external ear canal with closure of eustachian tube and external ear canal. It is used during all infratemporal fossa approaches A-C to remove skull base pathologies, but also serves as a treatment for persistent chronic otitis media or temporal bone tumors. In our case it allows to perform the implantation of the electrodes into an inflammation free surgical field. The use of subtotal petrosectomy for CI was first described by Bendet et al. for patients with chronic discharging ear and profound hearing loss.13 Regarding CI performance patients with CI and subtotal petrosectomy have the same functional outcome as healthy CI patients.14

Wegener’s granulomatosis is a rare disease that can lead to severe sensorineural hearing loss. For this entity cochlear implantation with subtotal petrosectomy is a safe and efficient treatment option. It provides hearing rehabilitation and cleaning of the inflamed middle ear at the same time.

REFERENCES


