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ABSTRACT 
Background

Dengue hemorrhagic fever (DHF) has re-emerged across the global South, particularly 
in tropical and subtropical urban areas, driven by environmental changes alongside 
local demographic and socioeconomic factors.

Objective

To investigate the spatial patterns and socioeconomic determinants of dengue fever 
in Nepal from 2020 to 2023.

Method 

Using Geographic Information Systems (GIS), Gi* cluster analysis, and Local Moran’s 
I statistics, the study examined the relationship between socio-economic variables 
and dengue incidence across districts. Key factors analyzed included population 
density, urbanization, and night-time light (NTL) intensity.

Result

Bivariate Local Indicators of Spatial Association (LISA) analysis showed fluctuating 
correlations between dengue hemorrhagic fever incidence and factors such as 
population density, urbanization, and night-time light intensity. Moran’s I value for 
population density were -0.083 in 2020, -0.082 in 2021, 0.526 in 2022, and -0.020 
in 2023. Similarly, for urbanization, Moran’s I values shifted from -0.103 in 2020 
to -0.090 in 2021, 0.458 in 2022, and 0.007 in 2023. Night-time light intensity also 
demonstrated changing correlations, with Moran’s I values of -0.091 in 2020, -0.102 
in 2021, 0.415 in 2022, and -0.068 in 2023. A notable shift from negative to positive 
correlations occurred between 2020 and 2022. In 2022, high-incidence dengue 
hemorrhagic fever clusters emerged in densely populated areas, while distinct spatial 
patterns were observed in 2020 and 2021.

Conclusion

Dengue hemorrhagic fever risk spatial models are useful tools for detecting high-risk 
locations and driving proactive public health initiatives. The study emphasized the 
importance of dynamic, targeted public health interventions based on spatial and 
socio-economic factors to effectively manage evolving dengue outbreak patterns.

KEY WORDS
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INTRODUCTION
Dengue fever is a significant health concern in tropical 
regions, particularly in densely populated urban areas where 
mosquitos thrive.1 The global incidence has surged, with 
over 6.5 million cases and 7,300 deaths reported in 2023.2-

4 In Southeast Asia, dengue causes economic burdens, 
with annual losses of up to $1.38 billion and 214,000 
disability-adjusted life years (DALYs).5-7 Nepal has seen a 
rapid rise in dengue cases, recording an unprecedented 
54,784 cases and 88 deaths in 2022, primarily in urban 
districts like Kathmandu, Bhaktapur, and Lalitpur.8 Dengue 
transmission peaks during the monsoon season, from 
June to September.9 Nepal’s response includes vector 
control measures, such as larvicides, space spraying, and 
promoting behavioral changes like mosquito net use.10,11 
Spatial analysis is vital in identifying dengue hotspots and 
guiding public health interventions.12,13 By mapping case 
distributions and examining socio-economic factors, it 
enables real-time surveillance and targeted responses.14,15 
This study aimed to examine the spatial model of Nepal’s 
sociodemographic and socioeconomic factors associated 
with dengue incidence from 2020 to 2023, contributing to 
more effective prevention and management strategies.

METHODS
Nepal, situated between India and the Tibet Autonomous 
Region of China, covers an area of 147,181 square 
kilometres, stretching 885 km from east to west and 
193 km from north to south. As of the 2021 census, the 
country’s population stands at approximately 29 million, 
including 2.2 million people living abroad, with an annual 
growth rate of 0.92%.16 Nepal is located between latitudes 
26°22′ N and 30°27′ N, and longitudes 80°4′ E and 88°12′ 
E. Administratively, the country is divided into 7 provinces 
and 77 districts, which help manage governance across the 
diverse landscape.17

Nepal’s geography ranges from the fertile plains of the 
Gangetic region to the towering Himalayas. The Upper 
Himalaya, accounting for 15% of the land area, is home to 
eight of the world’s highest peaks, attracting mountaineers 
and trekkers. The Middle Hills and Lower Himalayas, 
covering 68% of the country, have a temperate climate and 
rich soil, and include the capital, Kathmandu, along with 
other major cities. The Tarai Region, which occupies 17% 
of the land, is an agriculturally productive area and also 
contains important wildlife reserves. Nepal experiences 
a wide range of climates, with temperatures in the Tarai 
reaching up to 45°C, while in the Himalayas, temperatures 
can drop below -30°C. Kathmandu, on the other hand, 
enjoys relatively mild weather throughout the year.18

The origin of the variables

This study utilized multiple data sources to analyze a range 
of socio-economic variables. Data on average household 

size, annual growth rate (%), population density, and the 
percentage of owned versus rented houses was obtained 
from the National Report of Nepal’s National Population 
and Housing Census 2021.19 Data on dengue cases was 
sourced from the Nepal Epidemiology and Disease 
Control Division (EDCD) under the Ministry of Health and 
Population, Nepal.20

Data Analysis: Spatial analysis

The data was imported into Quantum GIS (QGIS) version 
3.36 after being processed, validated, and cleaned to merge 
spatial and non-spatial information, generating a shapefile 
for analysis. Using QGIS, we visualized dengue incidence 
from 2020 to 2023, aiming to identify patterns and possible 
clusters of high incidence rates. A detailed spatial analysis 
was then carried out with GeoDa version 1.22.21

Gi statistics

The Getis-Ord Gi* statistic was employed in the data 
analysis to identify spatial clusters of dengue incidence 
across Nepal’s districts from 2020 to 2023. This spatial 
analysis technique detected statistically significant hotspots 
(clusters of high dengue cases) and cold spots (clusters of 
low dengue cases) by comparing the observed dengue 
cases in a district with those in neighboring districts. The 
Gi* statistic calculated whether the spatial concentration 
of dengue cases in a given district and its neighbors was 
significantly higher or lower than the expected average.22

Getis-Ord Gi* statistic was computed the following formula.

Gi*=(⅀j Ꞷij ꭓj )/(⅀j ꭓj)

Where the weights are determined by Ꞷij, and the 
normalization is done by dividing by the total sum of ꭓj 
values.

A weight matrix was defined using the 3 K-nearest 
neighbors, which established neighboring relationships 
based on geographically closest districts. Districts that 
exhibited significantly higher incidence rates than expected, 
relative to their neighbors, were identified as hotspots, 
while districts with lower-than-expected incidence rates 
were labeled as cold spots. By applying the Gi* statistic, 
spatial patterns of dengue transmission were uncovered, 
highlighting regions with persistently high or low disease 
incidence and providing insights into where targeted public 
health interventions would have been most effective.23

Local Indicators of Spatial Association (LISA)

Local Moran’s I was computed using the equation: 

where “n” is the total number of regions, “S0” is the sum 
of spatial weights, “Z” represents the variable’s deviation 
from its mean, “S1” is the sum of squared deviations, and 
“Wij” refers to the spatial weight between regions i and j.
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Table 1. Gi* cluster map of Dengue incidence in 2020-2023

Dengue Clusters Gi* statistics

High Low

2020 Baitadi* Mugu***

Doti* Jumla*

Dailekh* Sindhupalchok*

Baglung**

Dolpa*

Mustang*

2021 Dolpa* Jumla***

Mustang* Rukum West***

Baglung** Rautahat*

Sunsari*

Morang*

Spatial autocorrelation for this study was evaluated using 
Local Indicators of Spatial Association (LISA), a set of 
statistics that includes measures like Moran’s I to detect 
various spatial patterns.24 We applied LISA to assess the 
global spatial autocorrelation of dengue incidence and 
related factors. Specifically, Moran’s I was used within 
the LISA framework to identify whether particular regions 
formed part of spatial clusters with similar dengue 
incidence values (such as high-high or low-low clusters) or 
if they were outliers (like high-low or low-high clusters). A 
weight matrix with three clusters of K-nearest neighbours 
was employed for both univariate and bivariate analysis. 
This study used 999 permutations to assess the sensitivity 
of significant locations to the number of permutations, 
with a significance threshold set at p < 0.05.

The Khon Kaen University Ethics Committee for Human 
Research (KKUEC) has granted an exemption for ethical 
approval for this study (Reference Number: HE 672162).

RESULTS
Geographic Distribution of Dengue Incidence

In 2020, a marked increase in dengue incidence was 
recorded in the districts of Baitadi, Doti, Dailekh, Baglung, 
Dolpa, and Mustang, while it was lower in Mugu, Jumla, 
and Sindhupalchok. The following year, 2021, recorded 
high dengue incidence in Dolpa, Mustang, and Baglung, 
with lower rates in Jumla, Rukum West, Rautahat, Sunsari, 
and Morang. In 2022, districts such as Parsa, Makawanpur, 
Kathmandu, Lalitpur, Bhaktapur, Kabhrepalanchok, 
Nuwakot, and Sindhupalchok experienced high dengue 
incidence, whereas Bajura, Mugu, Kalikot, Jumla, Salyan, 
Dang, and Siraha saw lower incidence rates. Finally, in 
2023, high dengue incidence was reported in Taplejung, 
Bhojpur, Dhankuta, Nuwakot, Gorkha, Lamjung, Chitawan, 
and Nawalpur, while Achham, Bardiya, Banke, Dang, Mugu, 
Sarlahi, Mahottari, Dhanusha, and Bara districts had lower 
rates (Table 1 and Fig. 1).

2022 Parsa* Bajura*

Makawanpur*** Mugu*

Kathmandu*** Kalikot*

Lalitpur*** Jumla*

Bhaktapur** Salyan*

Kabhrepalanchok*** Dang*

Nuwakot ** Siraha*

Sindhupalchok*

2023 Taplejung** Achham*

Bhojpur* Bardiya*

Dhankuta* Banke*

Nuwakot* Dang*

Gorkha* Mugu**

Lamjung* Sarlahi**

Chitawan* Mahottari*

Nawalpur* Dhanusha*

Bara*

P-value 0.05*, 0.01**, 0.001***

Figure 1. Gi* Cluster map of Dengue incidence in Nepal 2020-
2023 (a) Gi* Cluster map of Dengue incidence in 2020 (b) 
Significant map of Dengue incidence in 2020 (c) Gi* Cluster 
map of Dengue incidence in 2021 (d) Significant map of Dengue 
incidence in 2021 (e) Gi* Cluster map of Dengue incidence in 
2022 (f) Significant map of Dengue incidence in 2022 (g) Gi* 
Cluster map of Dengue incidence in 2023 (h) Significant map of 
Dengue incidence in 2023

Exploring Population Density, Urbanization, and Night-
Time Light (NTL) Impact using Gi* statistics

Table 2 illustrated a comparison of different clusters based 
on population density, urbanization, and NTL intensity 
for various regions in Nepal, categorized as either high 
or low. In terms of population density, areas like Rasuwa, 
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Table 2. Gi cluster map of population density, urbanization and 
night time light (NTL) in 2020-2023

Univariate analysis Gi* statistics

High Low

Population density Rasuwa* Mugu*

Nuwakot** Jumla*

Kathmandu*** Humla*

Lalitpur*** Dolpa*

Makawanpur**

Dhading*

Kabhrepalanchok***

Bhaktapur***

Urbanization Rasuwa* Mugu**

Nuwakot** Jumla*

Kathmandu*** Humla**

Lalitpur*** Dolpa*

Makawanpur** Kalikot*

Dhading* Dailekh*

Kabhrepalanchok*** Rukum West*

Bhaktapur** Darchula*

Baitadi*

Bajhang**

Bajura**

Achham*

Night-time light 2020 Rasuwa* Dolpa*

Nuwakot** Jumla*

Kathmandu*** Jajarkot*

Lalitpur*** Rukum West***

Makawanpur** Rukum East*

Dhading* Achham*

Kabhrepalanchok*** Ramechhap*

Bhaktapur** Okhaldhunga*

Sindhupalchok* Khotang*

Bhojpur**

Solukhumbu**

Sankhuwasabha**

Taplejung*

Night-time light 2021 Rasuwa* Achham*

Nuwakot** Jumla*

Kathmandu*** Jajarkot*

Lalitpur*** Rukum West***

Makawanpur** Rukum East*

Kabhrepalanchok*** Ramechhap*

Bhaktapur** Okhaldhunga*

Sindhupalchok* Khotang**

Bhojpur**

Solukhumbu***

Sankhuwasabha**

Night-time light 2022 Nuwakot** Achham*

Kathmandu*** Kalikot*

Nuwakot, Kathmandu, Lalitpur, Makawanpur, Dhading, 
Kabhrepalanchok, and Bhaktapur were characterized by 
high density, with Kathmandu, Lalitpur, Kabhrepalanchok, 
and Bhaktapur standing out with the highest density levels. 
In contrast, regions such as Mugu, Jumla, Humla, and Dolpa 
were identified as low-density areas.

Similarly, for urbanization, regions such as Rasuwa, 
Nuwakot, Kathmandu, Lalitpur, Makawanpur, Dhading, 
Kabhrepalanchok, and Bhaktapur exhibit high levels 
of urban development, with Kathmandu, Lalitpur, 
Kabhrepalanchok, and Bhaktapur being highly urbanized. 
On the other hand, Mugu, Jumla, Humla, Dolpa, Kalikot, 
Dailekh, Rukum West, Darchula, Baitadi, Bajhang, Bajura, 
and Achham had lower levels of urbanization.

The NTL intensity, which served as a proxy for urban 
activity and development, showed that in 2020, regions 
like Rasuwa, Nuwakot, Kathmandu, Lalitpur, Makawanpur, 
Dhading, Kabhrepalanchok, Bhaktapur, and Sindhupalchok 
had high levels of light intensity. In contrast, areas such 
as Dolpa, Jumla, Jajarkot, Rukum West, Rukum East, 
Achham, Ramechhap, Okhaldhunga, Khotang, Bhojpur, 
Solukhumbu, Sankhuwasabha, and Taplejung had 
lower levels. This pattern of high and low light intensity 
continued in subsequent years, with Kathmandu, 
Lalitpur, Kabhrepalanchok, Bhaktapur, and Sindhupalchok 
consistently showing high light intensity from 2021 to 2023. 
Less urbanized regions like Rukum West, Rukum East, and 
Jumla fluctuated between high and low categories over the 
years.

In summary, regions with higher population density and 
urbanization, such as Kathmandu, Lalitpur, and Bhaktapur, 
consistently showed higher NTL intensity, indicating 

Lalitpur** Jumla**

Makawanpur** Jajarkot*

Kabhrepalanchok*** Rukum West**

Bhaktapur** Rukum East*

Sindhupalchok* Dolpa*

Solukhumbu** Ramechhap*

Khotang**

Bhojpur**

Sankhuwasabha**

Taplejung*

Night-time light 2023 Nuwakot** Jumla*

Kathmandu** Rukum West*

Lalitpur*** Rukum East*

Makawanpur** Dolpa*

Kabhrepalanchok*** Dolakha*

Bhaktapur** Okhaldhunga*

Sindhupalchok* Sankhuwasabha**

Solukhumbu**

Taplejung*

P-value 0.05*, 0.01**, 0.001***
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more developed infrastructure and urban activity. On the 
other hand, rural regions like Mugu, Jumla, and Dolpa 
consistently ranked low across all categories, highlighting 
regional disparities in development (Fig. 2).

In 2021, the bivariate LISA indicated a statistically significant 
negative correlation between population density and 
dengue incidence (Moran’s I = -0.082). Consistent with the 
findings from 2020, no hot-spot clusters detected, however 
cold-spot clusters were found in Jumla and Rukum West 
districts.

The 2022 analysis demonstrated a shift in pattern, with 
a statistically significant positive correlation between 
population density and dengue incidence (Moran’s I = 
0.526). LISA analysis identified four hot-spot clusters in 
Kathmandu, Lalitpur, Bhaktapur, and Parsa, where high 
population density and dengue incidence were spatially 
clustered. Additionally, six cold-spot clusters were found 
in Bajura, Mugu, Jumla, Kalikot, Dang, and Salyan districts, 
indicating low population density and low dengue 
incidence.

In 2023, although the analysis yielded a Moran’s I of -0.020, 
indicating no statistically significant spatial association 
between population density and dengue incidence (Table 
3 and Fig. 3).

Figure 2. Gi* Cluster map of population density, urbanization 
and NTL in Nepal 2020-2023 (a) Univariate Gi* Cluster map of 
population density (b) Univariate Significant map of population 
density (c) Univariate Gi* Cluster map of urbanization (d) 
Univariate Significant map of urbanization (e) Univariate Gi* 
Cluster map of NTL in 2020 (f) Univariate Significant map of 
NTL in 2020 (g) Univariate Gi* Cluster map of NTL in 2021 (h) 
Univariate Significant map of NTL in 2021 (i) Univariate Gi* 
Cluster map of NTL in 2022 (j) Univariate Significant map of 
NTL in 2022 (k) Univariate Gi* Cluster map of NTL in 2023 (l) 
Univariate Significant map of NTL in 2023

Figure 3. Bivariate analysis of population density and Dengue 
incidence in 2020-2023 (a) LISA map of population density 
with Dengue incidence in 2020 (b) Moran’s I scatter plot of 
population density with Dengue incidence in 2020 (c) LISA map 
of population density with Dengue incidence in 2021 (d) Moran’s 
I scatter plot of population density with Dengue incidence in 
2021 (e) LISA map of population density with Dengue incidence 
in 2022 (f) Moran’s, I scatter plot of population density with 
Dengue incidence in 2022 (g) LISA map of population density 
with Dengue incidence in 2023 (h) Moran’s I scatter plot of 
population density with Dengue incidence in 2023

Bivariate Analysis of District-Level Dengue Incidence and 
Ecology (2019-2023) Impact of Population Density on 
Dengue Fever Incidence

The bivariate LISA analysis revealed a statistically significant 
negative correlation between population density and the 
incidence of dengue in 2020, with Moran’s I calculated 
at -0.083. Spatial analysis showed no areas where high 
population density coincided with high dengue incidence 
(Hot-spot or High-High clusters) in the surrounding three 
districts. Instead, LISA identified low population density 
and low dengue incidence clusters (Cold-spot or Low-Low 
clusters) in three districts: Mugu, Jumla, and Sindhupalchok.

Original Article



KATHMANDU UNIVERSITY MEDICAL JOURNAL

Page 30

Table 3. Bivariate analysis of population density and Dengue incidence in 2020-2023

Year Moran’s I LISA

HH HL LH LL

2020 -0.083 Dolpa*
Mustang*
Baglung**
Dailekh*
Baitadi*
Doti*

Mugu*
Jumla*
Sindhupalchok*

2021 -0.082 Rautahat*
Sunsari*
Morang*

Dolpa*
Mustang*
Baglung**

Jumla*
Rukum West*

2022 0.526 Kathmandu***
Lalitpur***
Bhaktapur**
Parsa*

Siraha* Sindhupalchok*
Nuwakot**
Kabhrepalanchok***
Makawanpur***

Bajura*
Mugu*
Jumla*
Kalikot*
Dang*
Salyan*

2023 -0.020 Bara*
Sarlahi**
Mahottari*
Dhanusha*

Nawalpur*
Chitawan*
Gorkha*
Lamjung*
Nuwakot*
Bhojpur*
Dhankuta*
Taplejung**

Achham*
Mugu**
Bardiya*
Banke*
Dang*

P-value 0.05*, 0.01**, 0.001***

Urbanization and Dengue Fever Incidence

The bivariate LISA analysis in 2020 revealed a statistically 
significant negative correlation between urbanization and 
dengue incidence, with Moran’s I of -0.103. The analysis 
showed no significant High-High clusters, where urban 
areas and high dengue incidence coincided. While various 
patterns emerged, none met the criteria for significant 
hot-spot clusters. However, Low-Low clusters, where 
both urbanization and dengue incidence were low, were 
identified in Mugu, Jumla, and Sindhupalchok districts, 
extending into three neighbouring districts.

In 2021, the LISA analysis similarly revealed a negative 
correlation between urbanization and dengue incidence 
(Moran’s I = -0.090). As in previous year, no High-
High clusters were identified, indicating no significant 
concentration of urban areas and high dengue incidence. 
Low-Low clusters, where both urbanization and dengue 
were low, were observed in Jumla and Rukum West districts 
and their neighbouring areas.

In 2022, there was a spatial autocorrelation between 
urbanization and dengue incidence, reflected by a Moran’s I 
of 0.458. The LISA analysis identified four High-High clusters 
in Kathmandu, Lalitpur, Bhaktapur, and Parsa, where 
high urbanization coincided with high dengue incidence, 
along with high values in the surrounding three districts. 
On the opposite end, six Low-Low clusters, indicating low 
urbanization and low dengue incidence, were found in 
Dang, Bajura, Mugu, Jumla, Kalikot, and Salyan districts.

By 2023, the Moran’s I was 0.007, indicaing no statistically 
significant spatial pattern between urbanization and 
dengue incidence (Table 4 and Fig. 4).

Impact of Night-time light (NTL) Index on dengue incidence 
in Nepal 

In 2020, the bivariate LISA analysis revealed a statistically 
significant negative correlation between NTL and dengue 
incidence, with Moran’s I at -0.091. The analysis found no 
areas where high NTL coincided with high dengue incidence 
(High-High clusters). However, Low-Low clusters, where 
both nighttime light intensity and dengue incidence were 
low, were identified in Jumla, Mugu, and Sindhupalchok 
districts.

In 2021, a similar pattern was observed, showing a negative 
correlation between NTL and dengue incidence (Moran’s 
I = -0.102). As in previous analysis, no High-High clusters 
were identified; however, two Low-Low clusters, where 
both nighttime NTL and dengue were low, were found in 
Jumla and Rukum West districts.

In 2022, a spatial autocorrelation between NTL and dengue 
incidence was detected, with a Moran’s I of 0.415. The LISA 
analysis identified four High-High clusters, where NTL and 
high dengue incidence were concentrated in Kathmandu, 
Lalitpur, Bhaktapur, and Parsa districts, along with high 
values in the surrounding three districts. Conversely, six 
Low-Low clusters, indicating low nighttime light intensity 
and low dengue incidence, were found in Bajura, Mugu, 
Jumla, Kalikot, Salyan, and Dang districts. In 2023, the 
Moran’s I was -0.068, but no statistically significant spatial 
pattern was observed between NTL and dengue incidence. 
(Table 5 and Fig. 5)
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DISCUSSION
In our setting, over the four years, dengue incidence varied 
significantly by district. High incidence was observed in 
different districts each year, reflecting the dynamic nature 
of dengue transmission. In 2020, areas like Baitadi and 

Table 4. Bivariate analysis of urbanization and Dengue incidence in 2020-2023

Years Moran’s I LISA

HH HL LH LL

2020 -0.103 Dolpa*
Mustang*
Baglung**
Doti*
Dailekh*
Baitadi*

Mugu*
Jumla*
Sinduhupalchok*

2021 -0.090 Rautahat*
Sunsari*
Morang*

Dolpa*
Mustang*
Baglung**

Jumla*
Rukum West*

2022 0.458 Kathmandu***
Lalitpur***
Bhaktapur**
Parsa*

Siraha* Sindhupalchok*
Nuwakot**
Kabhrepalanchok***
Makawanpur***

Dang*
Bajura*
Mugu*
Jumla*
Kalikot*
Salyan*

2023 0.007
 

Chitawan* Bara*
Mahottari*
Dhanusha*
Sarlahi**

Gorkha*
Nuwakot*
Dhankuta*
Bhojpur*
Taplejung**
Nawalpur*
Lamjung*

Bardiya*
Achham*
Mugu**
Banke*
Dang*

P-value 0.05*, 0.01**, 0.001***

Doti had high incidence rates of dengue, which shifted to 
Dolpa and Mustang in 2021. In 2022, high incidence was 
seen in Parsa and Kathmandu, while in 2023, districts such 
as Taplejung and Dhankuta reported with high incidence 
rates. These changes emphasized the need for targeted 
public health interventions based on regional factors 
influencing dengue incidence.

The analysis of population density and dengue incidence 
over four years showed significant fluctuations. In 2020 
and 2021, a negative correlation was found (Moran’s I of 
-0.083 and -0.082), with cold-spot clusters in rural districts 
indicating low population density and dengue incidence. 
In 2022, the trend reversed, showing a positive correlation 
(Moran’s I of 0.526) with hot-spot clusters in urban areas 
like Kathmandu, where high population density was linked 
to higher dengue incidence. By 2023, the correlation 
weakened (Moran’s I of -0.020), suggesting that the 
relationship between population density and dengue 
incidence varies over time. These findings highlight the need 
for targeted interventions in high-density urban areas and 
continued focus on rural areas with low dengue incidence. 
Furthermore, our results are consistent with prior research, 
such as a study in Dhaka, Bangladesh, which observed 
similar correlations between urbanization and dengue 
transmission.25 In Dhaka, most dengue cases occurred in 
areas with moderate to high population densities.25 The risk 
of dengue was heightened in urban settings, particularly 
where stagnant water sources, like dirty ponds and drains, 
were prevalent. This underscored the role of urbanization 
and population density in influencing dengue transmission, 
emphasizing the importance of environmental conditions 
and settlement patterns in disease dynamics.25 Another 
study conducted in Nepal, employing the Geographically 
Weighted Regression (GWR) model, emphasized that the 
average association of population density was moderately 

Figure 4. Bivariate analysis of urbanization and Dengue incidence 
in 2020-2023 (a) LISA map of urbanization with Dengue incidence 
in 2020 (b) Moran’s I scatter plot of urbanization with Dengue 
incidence in 2020 (c) LISA map of urbanization with Dengue 
incidence in 2021 (d) Moran’s I scatter plot of urbanization 
with Dengue incidence in 2021 (e) LISA map of urbanization 
with Dengue incidence in 2022 (f) Moran’s I scatter plot of 
urbanization with Dengue incidence in 2022 (g) LISA map of 
urbanization with Dengue incidence in 2023 (h) Moran’s I scatter 
plot of urbanization with Dengue incidence in 2023
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Table 5. Bivariate analysis of Night time light (NTL) and Dengue incidence in 2020-2023

Years Moran’s I LISA

HH HL LH LL

2020 -0.091 Dolpa*
Mustang*
Doti*
Dailekh*
Baitadi*
Baglung**

Mugu*
Jumla*
Sinduhu-palchok*

2021 -0.102 Rautahat*
Sunsari*
Morang*

Dolpa*
Mustang*
Baglung**

Jumla*
Rukum West*

2022 0.415 Kathmandu***
Lalitpur***
Bhaktapur**
Parsa*

Siraha* Makawanpur***
Sindhupalchok*
Nuwakot**
Kabhrepalan chok***

Bajura*
Mugu*
Jumla*
Kalikot*
Salyan*
Dang*

2023 -0.068 Chitawan* Bara*
Mahottari*
Dhanusha*
Sarlahi**
Banke*

Gorkha*
Nuwakot*
Dhankuta*
Bhojpur*
Taplejung**
Nawalpur*
Lamjung*

Bardiya*
Achham*
Mugu**
Dang*

P-value 0.05*, 0.01**, 0.001***

Figure 5. Bivariate analysis of nighttime light (NTL) and Dengue 
incidence in 2020-2023 (a) LISA map of NTL with Dengue 
incidence in 2020 (b) Moran’s I scatter plot of NTL with Dengue 
incidence in 2020 (c) LISA map of NTL with Dengue incidence 
in 2021 (d) Moran’s I scatter plot of NTL with Dengue incidence 
in 2021 (e) LISA map of NTL with Dengue incidence in 2022 (f) 
Moran’s I scatter plot of NTL with Dengue incidence in 2022 (g) 
LISA map of NTL with Dengue incidence in 2023 (h) Moran’s I 
scatter plot of NTL with Dengue incidence in 2023

positive (βpop density = 3.93).26 However, the strength of 
this association varied significantly across different districts 
within Nepal.26 Similarly, in China, using the same GWR 
model, researchers found that population size exerted 
strongly positive effects during epidemics, particularly 

notable in the boundary zones between Guangzhou City 
and Foshan City.27

In contrast, a study conducted in China using Maxent 
models projected that areas at high and moderate risk of 
Dengue Fever (DF) would expand significantly by 2070, 
with 48.47 million people, or 63.78% of the Pearl River 
Delta’s population, residing in these high-risk zones.28 This 
study identified a critical population density threshold 
of around 3,500 people per square kilometer, beyond 
which the risk of DF epidemics is expected to increase.28 
This study emphasized a specific population density 
threshold associated with increased risk, aligning with our 
observation that higher population density can be linked to 
higher dengue incidence in urban settings.28 These findings 
underscored the localized variations in how population 
density and size influence epidemic dynamics in different 
geographical contexts, highlighting the need for targeted 
and context-specific interventions in disease management 
and prevention strategies.

The analysis of the relationship between urbanization and 
dengue incidence over four years revealed shifting spatial 
patterns. In 2020 and 2021, a negative correlation was 
observed, with no high-high clusters of high urbanization 
and dengue incidence; instead, low-low clusters were 
found in rural districts such as Mugu and Jumla, suggesting 
lower transmission in less urbanized areas. By 2022, the 
correlation shifted to positive (Moran’s I = 0.458), identifying 
high-high clusters in urban centers like Kathmandu, where 
high urbanization was linked to increased dengue cases. 
In 2023, the correlation weakened, indicating variability 
over timeThese results emphasize the importance of 
implementing targeted public health interventions in urban 
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settings while also acknowledging the mitigating benefits 
associated with reduced urbanization in rural areas.

Our study aligned with previous research, such as a 
study in Dhaka, Bangladesh, where dengue cases were 
predominantly in areas with moderate to high population 
densities.25 The increased risk in urban environments, 
particularly where stagnant water sources like dirty ponds 
and drains were prevalent, highlighted the significant 
impact of urbanization and population density on dengue 
transmission, emphasizing the crucial role of environmental 
conditions and settlement patterns in disease dynamics.25 In 
contrast, a study in China using Maxent models forecasted 
an increase in areas with high and moderate risk for Dengue 
Fever (DF) by 2070.28 It predicted that 48.47 million people, 
or 63.78% of the population in the Pearl River Delta, will 
live in these high-risk zones. The study pinpointed a critical 
population density threshold of approximately 3,500 
people per square kilometer, beyond which the risk of 
DF is anticipated to rise. This study emphasized a specific 
density threshold that influences DF risk, aligning with 
our observations that higher urbanization correlates with 
increased dengue incidence in urban settings.28

The analysis of NTL intensity and dengue incidence from 
2020 to 2023 revealed shifting spatial patterns. In 2020 and 
2021, there was a negative correlation, with no significant 
High-High clusters (high light intensity and high dengue 
incidence), but Low-Low clusters were found in rural 
districts like Jumla and Mugu, indicating lower urbanization 
and dengue transmission. In 2022, the correlation became 
positive, with high-high clusters identified in urban centers 
like Kathmandu, suggesting that urbanization and NTL 
activity increased dengue risk. However, by 2023, no 
significant spatial pattern was observed, underscoring the 
temporal fluctuations in this relationship. These findings 
emphasized the need for targeted interventions in urban 

areas while acknowledging the protective effects of rural 
settings with lower levels urbanization.

One of the key strengths of this study is its thorough 
examination of dengue incidence throughout all 77 
districts of Nepal, which enables the recognition of areas 
needing focused dengue control efforts. Nevertheless, the 
study is constrained by its dependence on secondary data 
sources, preventing any assessment of causal relationships. 
Furthermore, being the secondary data the absence of 
real-time reporting, which could lead to under-reporting, 
over-reporting, or the misclassification of dengue cases.

CONCLUSION
The study revealed dynamic spatial patterns in dengue 
incidence across Nepal, influenced by socio-economic 
factors such as population density, urbanization, and NTL 
intensity. The shift from negative to positive correlations 
over the years indicates evolving patterns of dengue 
distribution, with urban and densely populated areas 
becoming more significant in recent years. The findings 
highlight the importance of targeted interventions based 
on detailed spatial and socio-economic analyses to 
effectively manage and control dengue outbreaks. Public 
health strategies should adapt to these changing patterns 
to reduce the burden of dengue in high-risk areas and 
improve overall health outcomes.
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